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EFFECTIVE MEDIUM THEORIES OF”

INHOMOGENEOUS MEDIA FROM A MO13ERiiPERSPECTIVE

T E. Gubernatis*-.

INTRODUCTION

Many physical phenomena are associated with inhornogeneous medium.
For example, a solid state physicist may study the electrical properties
of disordered alloys; a geologist, the mechanical properties of polycrys-
talline rocks. Other scientists may ponder the twinkling of stars or
water-seepage through concrete.

Various theoretical approaches to these diverse phe.lomena generally
exhibit two common features. One feature is a statement of physics,
usually in the context of a ❑odel. This statement may be the equation uf
❑otion for a solid continuum, the time independent Schr~dinger equation,
Helmholtz’s equation, etc. These various equations regulate the dynamical
variables and have ~s parameters stochastic variables associated with the
Inhomogeneous medium. The second common feature is an average of the
dynamical variables or their products over the distribution of the sto-
chastic parameters. Even when the statistical information is complete,
only an approximation to the averaging, which for some problems is called
an effective medium approximation, is generally possible. Most often
effective .medium approximations are developed by intuitive means.

Recently, in ~olid state physics in the study of disordered alloys,

theorists stated the physics of their problem in terms of an integral
equation and analyzed this equation by techniques deueloped in the quantum
mechanical theory of scattering. Thi3 ~ntegral equation is equivalent to
a perturbation series (an infinite series), and various effective medium
approximations were developed usually by approximating the average of each

term i~ the series and then summing an infinite series of terms. This
approach, scattering theory with infinite order perturbation summation,
cieveloped perturbatively several effective medium approximations. Some
of these approximations have direct analogs to approximations developed
intuitively for other phenomena.

I will illustrate the application of the scattering theory approach
to a problem outside of s~lid state physicu, the computation of the
effective dielectric congtant of a polycrystal. I will state the problem
in the form of an integral equation, recover several well-known intuitive
approximations, and indictit?, but not demonstrate, the connection of the
approximations to perturbntjoll theory. This example and its discussion
is intended primarily as Lln ill~lstration of an approach to problems
associated with Inhomogeneou.: mc’riia that has the advantagea o.ibeing
formally general, having a specific recipe for its application, and
having the potential for error analysis. Additionally, the discussion cf
the approximations hopefully clarifies the meaning of several commonly
used effective medium approximations.

Because of an apparent growing interest LO use the scattering theory
approach in scientific areas other than solid state physics, part of the
discussion is quite detailed to provide an introduction to concepts and
structures which may appear new.

T
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—.
considerably less detailed. In place of detail are merely remarks about

the nature of these commonly used approximations. In some cases consider-
able analysis is required for a full appreciation of these remarks; some
reference to literature where the analysis is detailed are given.

SCATTERING THEORY APPROACH
.

Statemen~ of the Problem .-

The example under consideration is a polycrystalline material that
has a dielectric constant tecsor e(r) which in general changes from grain
to grain because of changes in ma~e~ial type, orientation of the grain,
or grain size and shape. However, when measured, the material as a whole
behaves effectively as a homo eneous medium with a dielectric constant e*.
The ’problem iB to calculate ef= from statistical information about ~(~).=

For a static problem the physics follows from

V“D=O-- (1)

where ~ is the electrjc displacement field. Modelling of the medium
begins with the const~tutive relation

D(r) = e(r) E(r)-—- --- (2)

where ~ 18 the electric field intensity, and the effective dielectric con-
stant is defined by ,-

where the

(Q) =e*(E)=- (3)

angular brackets denote ensemble averaging.

The problem specified by Eqs. (l)-(3) is analogous to many other
problems. As ~ IS a gradient of a potential , replacing ~ by the gradient
of temperature and D by the heat current re-interprets e as a thermal con-
ductivity. Through–similar re-interpretations the prob~ems of effective
electrical conductivity, permeability, diffusivity, elastic stiffness,
etc. are seen as directly analogous. The problem of effective elastic
properties, of course, requir~s increases in tensorial rank.

It Is useful to write e m the sum of two parts
=

e mg” + & (4)
== =

where Co is some arbitrarily, but in general conveniently. chosen spa-
tially-invariant (homogeneous) (Dielectric constant so that all stochastic
variations are contained in the perturbation ~. One can now show the

equivalence of Eqs. (l)-(4) to Lhe integral equation

~D~O + ~d~’[&(r’ )E(r’)~V’]&(r,r’)-——- .—

where & is the Green’s funccion satisfying

V.e”
.& =ti(~-~’)

and ~“ satisfies the homogeneous equation

p~”g”-o
.. ,—,, 2

(5)
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It is ~lso useful to write the integral equation in several-different
forms. First, with a standard Indicial notation

Ei = E; + rd~ic &
— ij jkEj

where

‘ij - ‘ji - %,j = $>~j

since gi is expressible as the gradient of a potential. Next, In an
operator notation

E.EO+@@E (6)

where G is an integral operator

Equation (6) is a statement of the physics that is identical to Eqs. (l)-
(3). It is analogous to the Lippman-Schwinger (the scattering) equation
in quantum mechauics.

The integral equation has a f~rmal solution obtained by iteration and
represented by the infinite series

E = E“ + G6eE0 + G&G&EO + ● ● ●

Different terms contain the perturbation 6C
the definition of T, called the T-matrix in

T=&-k& G&+&G& G&+

the following equivalent to (6) is obtained

E M E“ + GTEO

.-

to different “powers”. With
quantum mechanics,

● *9

(7)

Now T represents the perturbation series, and a formal summation of T is
obvious

T=&(I- G6e )-1

Sir,ce the explicit character of & ia yet unspecified, Eqs. (6) and
(7) are general. The specification of & for a polycrystal assumes the
following model:

6@(~) = : &%a(~) (8)

where ea(~) = 1, ~ in grain a
O, otherwise

The term “grain” is used in the broadest possible sense. For example,
the regiun m could be a pore.

TO correspond to the piecewise behavior of &, it is convenient to

define a t-matrix associated with grain a

- G&”Oa) -1
ta “ tk%a(l (9)

3
.



With this definition T is expressible as
.

T-~ta+E ZtaGtB+~ ~ ~ ~aGtf3GLY + . . .
(lo)

a a~ a~~~

Although (10) is equivalent co (7), it shifts the focus of the perturba-
tion series from & to ta. The significance is that if (7) were truncated
after the first term, the perturbation series would be first order in &a.
On the other hand, if (10) is truncated with the first term, the perturba-
tion would be of infinite order in &a.

t“ has a physical meaning: If the deviation from homogeneity is con-
fined solely to one region a, then

E . E“ + G&a@aE

which when iterated and summed becomes
,

t E - E“ + GtaEO

Thus ta is the T-matrix which solves the single inhomogeneity problem.
Consequently in (10) the first term represents contributions from regions
a individually embedded in a homogeneous medium e“ . The remaining terms,
all involving at least two regions, represent the interaction between
regiona.

The Averaging’

To compute
from (7)

(E) =

e*, (E) and {D) are needed. (E) is determined directly

E“ + (GT)EO (11)

but the determination of (D) involves several steps. First, since
e-~O+&,

D.eOE+&E

Next from a comparison of (6) and (7),

&E M TE”

Finally,

(D) -e O(E) + (T)EO

llms, (11) and (12) with (3) yield

C* - e“ + {T)(I + (GT))-l

(12)

(13)

This is an exact equation, independent of the assumed polycrystalline
model.

As with most exact equations, exact evaluation is usually Impossible.
Approximations are needed. In the present case, one see~ that approxima-
tions to T are especially important, and one possLble approximation is to
truncgte (10) after the first term.

. ... .—. -
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T=Zt” (14)
a

For the standard problem of isotropic &a and spherical grains, the above
when used in (13) yields

.*-eo J-d
e* +2?0 = :f~ej+.zo (15)

where f is the volume fraction of material type j that has a dielectric
$constan ej. Often, a polarizability

4Traj ej -eo
T=ej+ze

is associated with

e*-60

C* +2?0

This is the famous

each grain, and (15) }.s written as

-g
Z fjaj

3j
(16)

Clausius-Mossotti equation or Lorentz-Lorenz formula.

It is important to note that (14) is used in (13), not in

~*=~O+(T} (17)

Since ta solves the problem of a single grain a embedded in e“, (17) is a
simple sum of ‘the average contribution of each grain. From elementary
electrostatics, when an isotropic dielectric sphere is placed in a uniform
electric field E“, the sphere i3 polarized; ta is connected with this

polarization. Equation (14) sums individual “dipoles” embedded in co and
does not account for the fact that any given dipole sees a medium in which
other “dipoles” are present. The factor (I + (GT))-l in (13) is the
Lorentz correction which accounts for the presence and the polarization of
other grains by replacing these grains by a uniformly polarized medium.
The important point is that in (16) the grain a is embedded not in c“, as
in (14), but in a uniformly “polarized” medium; however, interactions
between grains are still neglected.

The approximation (14) has been used in many different contexts
usually with co = (c), for example, in electrical conductivity problems

by Maxwell[l], (frequency dependent) dielectric problems by Maxwell-
Garnett[2,3], thermal conductivity problem by deVries[4], and in solid
state physics by Elliott and Taylor[:I]. For elastic problems, Kr6ner[6]
used (17). In solid state physics, (14) is called the Average T-matrix
Approximation (ATA).

A commonly used appr~ximation is a self-consistent effective medium
approximation,, “Self-consistency” is a term used in different contexts,
often incompatibly. In the present context, the self-consistency means
the follow!ng: T in (13) depends on c“ through de and G. If E“ were
chosen ao that (T) = O, then C* = co.

T, let alone (T), is not a quantity one expects t.oevaluate exactly.
Self-consistent solutions, however, can be sought for approximations to T.
If, for example,

T=Zta (18:,)
a

5
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(T) = (j (18b)

then for the standard problem of isotropic 6e
a

and spherical grains one

finds the foll~ing well-known self-consistent effective medium approxi-
mation

-. ~* -Cj .,

If—” -o
j je*+2J

.,

(19)

The self-consistency condition is significant. Both the ATA and
self-cons~.stent approximation are based on a perturbation series repre-
sented by

T =Zta
a

i.e. the embedding of single grains in a homogeneous medium. Equation
(16), however, does not equal (19). The difference 1s the ATA stops with
the above and thereby ignores interactions between grains, while the sel~-
consistent approximation through the additional condition (18b) incorpor-
ates interacting grains in an average manner.

The details of how (18b) incorporates some of the interactions
requires more analysis than space permits. Physically, one considers a
single grain a in a uniformly polarized ❑edium that represents the pre-

sence of the other grains. This polarized medium polarizes a, but the
polarization of a changes the polarization of the uniform medium, the
change in this polarization changes the polarization of a, etc. until the
polarization of a and the uniform medium representing the other grains are
consistent on the average.

Self-consistent approximations, as defined in the present context,
have been used by various investigators, for example, Bruggeman[7] and
Landaeur[8] for electrical media, Hershey[9], Hill[lO], and Budiansky[ll]
for elas~ic media. In solid state physics this approximation was derived

by Taylor[12] and by Soven[13] and is called the (single site) Coherent
Potential Approximation (CBA).

REMARK

From (10) corrections to e* bey~nd the ATA are easily seen to be
second order in t. Corrections to e beyond the CPA are not as obvious,
but are known to be fourth order in t, which implies that the ATA is an
approximation to the CPA. The important point is that analysis natural
to the scattering theory with infinite order perturbation ?ummation
approach can connect condition (18) to a well-defined perturbation
analysis and identify the next order corrections. Since the self-

consi$tency condition is a formal expression OR intuitive and physical
conditions stated for a variety of related problems, the ad hoc tlavor.—
of many self-consistent effective medium approximations is placed on
clearly defined theoretical grounds by their relation to an explicit per-
turbation series that has immediately ider.tifiable corrections.

On phy~-.icalgrounds the approximation,
/

T= z ta
a

........ ...-------.. . ..
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because it neglects interactions between grains--and clustering effects is
expected to work for well-separated grains of different species embedded
in e“. For two-phase systems, this means small concentrations of one
species hosted in the other. Because the CPA is also based on this same

approximation to T, it too is often regarded as a small concentration
approximation. This is not completely correct since comparisons with
experiment suggest otherwise. Apparently, for many problems the inter-
actions between grains and such clustering effects as “touching” grains
are on the average not as important as one would a priori suppose.

For a two-phase medium the CPA is exact for the low concentration
limit for either species. One interpretation of the CPA is that of an
interpolation formula between these limits , an interpolation performed
according to a specific approximation. The interpretation, of course, is
not always useful for problems involving porous materials.

Another important point about the CPA is that it is the best possible
approximation using statistical information about single grains, e.g.
volume fraction, texture, etc. It is the best possible in the sense that
it evaluates every perturbaticm term that can be evaluated with only
single grain distribution functions. Corrections to the CPA require
knowledge of two-grain distribution functions.

There is more than one way to relate effective medium approximations
to perturbation theory. Elliot et au14] and Yonezawa and Mo_rigaki[15]
review these ways for solid state physics problems. In a series of
papers[16-23] and with a specific approach, Hori and Yonezawa do an exten-
sive analysis of electrical, thermal, and magnetic problems. Gubernatis
and Krumhansl[24,25] discuss the analysis as applied to elastic problems.
Other references[26-321 treat a variety of problems both from the intui-
tive and more formal viewpoints. In some cases comparisons with experi-
ment are given. This list is not close to being definitive.

In closing, I emphasize that what I have discussed by example is
an approach, scattering theory with infinite order perturbation summation,
to problems associated with inhomogeneous media that is formally general,
gives a specific recipe for application , and has potential for error
analysis.
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